Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96.

نویسندگان

  • J M Raaijmakers
  • D M Weller
چکیده

The genotypic diversity that occurs in natural populations of antagonistic microorganisms provides an enormous resource for improving biological control of plant diseases. In this study, we determined the diversity of indigenous 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. occurring on roots of wheat grown in a soil naturally suppressive to take-all disease of wheat. Among 101 isolates, 16 different groups were identified by random amplified polymorphic DNA (RAPD) analysis. One RAPD group made up 50% of the total population of DAPG-producing Pseudomonas spp. Both short- and long-term studies indicated that this dominant genotype, exemplified by P. fluorescens Q8r1-96, is highly adapted to the wheat rhizosphere. Q8r1-96 requires a much lower dose (only 10 to 100 CFU seed(-1) or soil(-1)) to establish high rhizosphere population densities (10(7) CFU g of root(-1)) than Q2-87 and 1M1-96, two genotypically different, DAPG-producing P. fluorescens strains. Q8r1-96 maintained a rhizosphere population density of approximately 10(5) CFU g of root(-1) after eight successive growth cycles of wheat in three different, raw virgin soils, whereas populations of Q2-87 and 1M1-96 dropped relatively quickly after five cycles and were not detectable after seven cycles. In short-term studies, strains Q8r1-96, Q2-87, and 1M1-96 did not differ in their ability to suppress take-all. After eight successive growth cycles, however, Q8r1-96 still provided control of take-all to the same level as obtained in the take-all suppressive soil, whereas Q2-87 and 1M1-96 gave no control anymore. Biochemical analyses indicated that the superior rhizosphere competence of Q8r1-96 is not related to in situ DAPG production levels. We postulate that certain rhizobacterial genotypes have evolved a preference for colonization of specific crops. By exploiting diversity of antagonistic rhizobacteria that share a common trait, biological control can be improved significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions Between Strains of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens in the Rhizosphere of Wheat.

ABSTRACT Strains of fluorescent Pseudomonas spp. that produce the antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG) are among the most effective rhizobacteria controlling diseases caused by soilborne pathogens. The genotypic diversity that exists among 2,4-DAPG producers can be exploited to improve rhizosphere competence and biocontrol activity. Knowing that D-genotype 2,4-DAPG-producing strains ...

متن کامل

Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96.

Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively coloni...

متن کامل

Comparison of Three Methods for Monitoring Populations of Different Genotypes of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens in the Rhizosphere.

ABSTRACT Pseudomonas fluorescens strains producing the antibiotic 2,4-diacetylphloroglucinol (DAPG) have biocontrol activity against a broad spectrum of root and seedling diseases. In this study, we determined the effect of genotype on the ability to isolate and quantify introduced 2,4-DAPG producers from the rhizosphere of wheat using three different methods: traditional dilution plating on se...

متن کامل

Identification of differences in genome content among phlD-positive Pseudomonas fluorescens strains by using PCR-based subtractive hybridization.

Certain 2,4-diacetylphloroglucinol-producing strains of Pseudomonas fluorescens colonize roots and suppress soilborne diseases more effectively than others from which they are otherwise phenotypically almost indistinguishable. We recovered DNA fragments present in the superior colonizer P. fluorescens Q8r1-96 but not in the less rhizosphere-competent strain Q2-87. Of the open reading frames in ...

متن کامل

Host Crop Affects Rhizosphere Colonization and Competitiveness of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens.

ABSTRACT Strains of Pseudomonas fluorescens producing the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are biocontrol agents which play a key role in the suppressiveness of some soils against soilborne pathogens. We evaluated the effect of the host plant genotype on rhizosphere colonization by both indigenous and introduced 2,4-DAPG-producing P. fluorescens. First, population densities of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 67 6  شماره 

صفحات  -

تاریخ انتشار 2001